Strict Inequalities for Connective Constants of Transitive Graphs
نویسندگان
چکیده
The connective constant of a graph is the exponential growth rate of the number of self-avoiding walks starting at a given vertex. Strict inequalities are proved for connective constants of vertex-transitive graphs. First, the connective constant decreases strictly when the graph is replaced by a nontrivial quotient graph. Second, the connective constant increases strictly when a quasitransitive family of new edges is added. These results have the following implications for Cayley graphs: the connective constant of a Cayley graph decreases strictly when a new relator is added to the group, and increases strictly when a nontrivial group element is declared to be a generator.
منابع مشابه
Self-avoiding Walks and Connective Constants
The connective constant μ(G) of a quasi-transitive graph G is the asymptotic growth rate of the number of selfavoiding walks (SAWs) on G from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph G. • We present upper and lower bounds for μ in terms of the vertex-degree and girth of a transitive graph. • We discuss the qu...
متن کاملLocality of Connective Constants, I. Transitive Graphs
The connective constant μ(G) of a quasi-transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. We prove a locality theorem for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. The proof exploits a generalized bridge decomposition of self-a...
متن کاملCounting Self-avoiding Walks
The connective constant μ(G) of a graph G is the asymptotic growth rate of the number of self-avoiding walks on G from a given starting vertex. We survey three aspects of the dependence of the connective constant on the underlying graph G. Firstly, when G is cubic, we study the effect on μ(G) of the Fisher transformation (that is, the replacement of vertices by triangles). Secondly, we discuss ...
متن کاملPairs of graphs with connective constants and critical probabilities in the same order
We give examples of pairs of planar, quasi-transitive graphs with connective constants and critical probabilities in the same order.
متن کاملLocality of Connective Constants, Ii. Cayley Graphs
The connective constant μ(G) of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. In earlier work of Grimmett and Li, a locality theorem was proved for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. A condition of the th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 28 شماره
صفحات -
تاریخ انتشار 2014